The effect of Cu doping on the piezoelectric properties of ZnO systems: First-principles calculations

Author:

Liu Lin1,Yu Wentao1,Zhao Yujie1,Zhu Wensheng2,Li Jing1,Wu Lingkang3,Wang Hao4

Affiliation:

1. School of Mechanical Engineering, Changzhou University, 213164 Changzhou, P. R. China

2. CNOOC Energy Development of Equipment and Technology Co., Ltd., Tianjin 300480, P. R. China

3. Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330095, P. R. China

4. Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P. R. China

Abstract

First-principles calculations are performed, revealing a significant enhancement of the piezoelectric properties of wurtzite Zn[Formula: see text]O[Formula: see text] upon the incorporation of a single Cu atom. Research has demonstrated that the piezoelectric constant [Formula: see text] reaches its maximum value at a doping concentration of 1.4% for Cu atoms. The lattice parameters a and c of Zn[Formula: see text]O[Formula: see text] are decreased and the piezoelectric strain coefficient [Formula: see text] is increased by replacing one Cu atom in Zn[Formula: see text]O[Formula: see text]. It is found that elastic softening is the primary factor responsible for the increase of [Formula: see text] in Zn[Formula: see text]Cu1O[Formula: see text]. By differential charge density analysis, it is found that the covalency between Cu–O bonds is lower than that of Zn–O bonds, and the covalent bonding characteristics are weakened. Bader charge analysis shows that the charge of Cu is higher than that of Zn, indicating a more significant ionic bonding feature than that of Zn. Thus, a weaker covalent and stronger ionic bond are considered to play an essential role in promoting elastic softening for ZnO, which eventually promotes a significant enhancement in piezoelectric properties.

Funder

Major Scientific and Technological R & D Projects of Jiangxi Province of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3