Platform and Algorithm Development for a RFID-Based Indoor Positioning System

Author:

Zou Han1,Xie Lihua1,Jia Qing-Shan2,Wang Hengtao2

Affiliation:

1. Nanyang Technological University, Singapore 639798, Singapore

2. Tsinghua University, Beijing, China 100084, China

Abstract

In recent years, developing Indoor Positioning System (IPS) has become an attractive research topic due to the increasing demands on Location-Based Service (LBS) in indoor environment. Several advantages of Radio Frequency Identification (RFID) Technology, such as anti-interference, small, light and portable size of RFID tags, and its unique identification of different objects, make it superior to other wireless communication technologies for indoor positioning. However, certain drawbacks of existing RFID-based IPSs, such as high cost of RFID readers and active tags, as well as heavy dependence on the density of reference tags to provide the LBS, largely limit the application of RFID-based IPS. In order to overcome these drawbacks, we develop a cost-efficient RFID-based IPS by using cheaper active RFID tags and sensors. Furthermore, we also proposed three localization algorithms: Weighted Path Loss (WPL), Extreme Learning Machine (ELM) and integrated WPL-ELM. WPL is a centralized model-based approach which does not require any reference tags and provides accurate location estimation of the target effectively. ELM is a machine learning fingerprinting-based localization algorithm which can provide higher localization accuracy than other existing fingerprinting-based approaches. The integrated WPL-ELM approach combines the fast estimation of WPL and the high localization accuracy of ELM. Based on the experimental results, this integrated approach provides a higher localization efficiency and accuracy than existing approaches, e.g., the LANDMARC approach and the support vector machine for regression (SVR) approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conventional system to deep learning based indoor positioning system;Indian Journal of Engineering and Materials Sciences;2024

2. Wearable EEG-based construction hazard identification in virtual and real environments: A comparative study;Safety Science;2023-09

3. Similar Formation Control via Range and Odometry Measurements;IEEE Transactions on Cybernetics;2023

4. Fusion of WiFi and IMU Using Swarm Optimization for Indoor Localization;Machine Learning for Indoor Localization and Navigation;2023

5. A New Hybrid Method for Indoor Positioning;Engineering Cyber-Physical Systems and Critical Infrastructures;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3