UAV Cooperative Air Combat Maneuvering Confrontation Based on Multi-agent Reinforcement Learning

Author:

Gong Zihao1,Xu Yang23,Luo Delin1ORCID

Affiliation:

1. School of Aerospace Engineering, Xiamen University, Xiamen 361102, P. R. China

2. School of Civil Aviation, Northwestern Polytechnical University, Xian 710072, P. R. China

3. Yangtze River Delta Research Institute of NPU, Taicang 215400, P. R. China

Abstract

Focusing on the problem of multi-UAV cooperative air combat decision-making, a multi-UAV cooperative maneuvering decision-making approach is proposed based on multi-agent deep reinforcement learning (MARL) theory. First, the multi-UAV cooperative short-range air combat environment is established. Then, by combining the value-decomposition networks (VDNs) deep reinforcement learning theory with the embedded expert collaborative air combat experience reward function, an air combat cooperative strategy framework is proposed based on the networked decentralized partially observable Markov decision process (NDec-POMDP). The air combat maneuvering strategy is then optimized to improve the cooperative degree between UAVs in cooperative combat scenarios. Finally, multi-UAV cooperative air combat simulations are carried out and the results show the feasibility and effectiveness of the proposed cooperative air combat decision-making framework and method.

Funder

National Natural Science Foundation of China

Basic Research Programs of Taicang

Fundamental Research Funds for the Central Universities

Yangtze River Delta Research Institute of NPU, Taicang China

Industrial Development and Foster Project of Yangtze River Delta Research Institute of NPU, Taicang

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3