Active Control of a UAV Helicopter with a Slung Load for Precision Airborne Cargo Delivery

Author:

Kang Keeryun1,Prasad J. V. R.2,Johnson Eric2

Affiliation:

1. Agency for Defense Development, 111 Sunam-Dong, Yuseong, Daejeon 305-152, Korea

2. School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA 30332-1050, USA

Abstract

An active controller for a UAV helicopter carrying a slung load is described in this paper. The objective of the controller is to allow the UAV to safely transport a slung load and to place it precisely on a moving ground platform such as a moving truck or a ship. In order to fulfill this objective, an active slung load controller is synthesized that forms an outer loop in providing trajectory commands to an existing automatic flight control system (AFCS) of an unmanned helicopter. The synthesized controller consists of three sub-components; first a target position tracker which generates position tracking commands, second a load oscillation controller which generates load oscillation damping commands, and third an adaptive neural network which compensates for uncertainties associated with flight environment and/or modeling errors. A linear proportional-plus-derivative (PD) controller is used for the target position tracking control. A nonlinear controller based on feedback linearization of the slung load dynamics is used for the load oscillation control. A single hidden layer neural network with an adaptive gain update is used for uncertainty compensation. The proposed controller is evaluated in simulations within the Georgia Tech UAV Simulation Tool (GUST) and inflight tests using the GTMax UAV helicopter test-bed. Both simulation and flight test results are presented to demonstrate the effectiveness of the proposed controller in dampening of load oscillations while simultaneously reducing position errors relative to a virtual moving ground platform, in the presence of random ground vehicle motion, wind gusts, and modeling errors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3