Affiliation:
1. Lab of Communication and Information Security, Institute of Big Data Technologies, Shenzhen Graduate School, Peking University, Shenzhen, China
Abstract
Visual tracking algorithm based on deep learning is one of the state-of-the-art tracking approaches. However, its computational cost is high. To reduce the computational burden, in this paper, A real-time tracking approach is proposed by using three modules: a single hidden layer neural network based on sparse autoencoder, a feature selection for simplifying the network and an online process based on extreme learning machine. Our experimental results have demonstrated that the proposed algorithm has good performance of robust and real-time.
Publisher
World Scientific Pub Co Pte Lt
Subject
Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献