Graphical Minimax Game and Off-Policy Reinforcement Learning for Heterogeneous MASs with Spanning Tree Condition

Author:

Dong Wei1,Wang Jianan1,Wang Chunyan1,Qi Zhenqiang2,Ding Zhengtao3

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

2. Department of Research and Development, China Academy of Launch Vehicle Technology, P.O. Box 142-402, Beijing 100854, P. R. China

3. Department of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK

Abstract

In this paper, the optimal consensus control problem is investigated for heterogeneous linear multi-agent systems (MASs) with spanning tree condition based on game theory and reinforcement learning. First, the graphical minimax game algebraic Riccati equation (ARE) is derived by converting the consensus problem into a zero-sum game problem between each agent and its neighbors. The asymptotic stability and minimax validation of the closed-loop systems are proved theoretically. Then, a data-driven off-policy reinforcement learning algorithm is proposed to online learn the optimal control policy without the information of the system dynamics. A certain rank condition is established to guarantee the convergence of the proposed algorithm to the unique solution of the ARE. Finally, the effectiveness of the proposed method is demonstrated through a numerical simulation.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3