LOCAL LINEAR INDEPENDENT COMPONENT ANALYSIS BASED ON CLUSTERING

Author:

KARHUNEN JUHA1,MĂlĂROIU SIMONA1,ILMONIEMI MIKA1

Affiliation:

1. Helsinki University of Technology, Neural Networks Research Centre, P.O. Box 5400, FIN-02015 HUT, Espoo, Finland

Abstract

In standard Independent Component Analysis (ICA), a linear data model is used for a global description of the data. Even though linear ICA yields meaningful results in many cases, it can provide a crude approximation only for general nonlinear data distributions. In this paper a new structure is proposed, where local ICA models are used in connection with a suitable grouping algorithm clustering the data. The clustering part is responsible for an overall coarse nonlinear representation of the data, while linear ICA models of each cluster are used for describing local features of the data. The goal is to represent the data better than in linear ICA while avoiding computational difficulties related with nonlinear ICA. Several data grouping methods are considered, including standard K-means clustering, self-organizing maps, and neural gas. Connections to existing methods are discussed, and experimental results are given for artificial data and natural images. Furthermore, a general theoretical framework encompassing a large number of methods for representing data is introduced. These range from global, dense representation methods to local, very sparse coding methods. The proposed local ICA methods lie between these two extremes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3