FRANKSUM: NEW FEATURE SELECTION METHOD FOR PROTEIN FUNCTION PREDICTION

Author:

AL-SHAHIB ALI1,BREITLING RAINER12,GILBERT DAVID1

Affiliation:

1. Bioinformatics Research Centre, Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom

2. Institute of Biomedical and Life Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom

Abstract

In the study of in silico functional genomics, improving the performance of protein function prediction is the ultimate goal for identifying proteins associated with defined cellular functions. The classical prediction approach is to employ pairwise sequence alignments. However this method often faces difficulties when no statistically significant homologous sequences are identified. An alternative way is to predict protein function from sequence-derived features using machine learning. In this case the choice of possible features which can be derived from the sequence is of vital importance to ensure adequate discrimination to predict function. In this paper we have successfully selected biologically significant features for protein function prediction. This was performed using a new feature selection method (FrankSum) that avoids data distribution assumptions, uses a data independent measurement (p-value) within the feature, identifies redundancy between features and uses an appropiate ranking criterion for feature selection. We have shown that classifiers generated from features selected by FrankSum outperforms classifiers generated from full feature sets, randomly selected features and features selected from the Wrapper method. We have also shown the features are concordant across all species and top ranking features are biologically informative. We conclude that feature selection is vital for successful protein function prediction and FrankSum is one of the feature selection methods that can be applied successfully to such a domain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural and functional analysis of protein;Bioinformatics;2022

2. Machine learning techniques for protein function prediction;Proteins: Structure, Function, and Bioinformatics;2019-11-14

3. Background on Biology of Ageing and Bioinformatics;Advanced Information and Knowledge Processing;2018-11-30

4. Resting State Effective Connectivity Allows Auditory Hallucination Discrimination;International Journal of Neural Systems;2017-05-03

5. EFFICIENT AUTOMATIC SELECTION AND COMBINATION OF EEG FEATURES IN LEAST SQUARES CLASSIFIERS FOR MOTOR IMAGERY BRAIN–COMPUTER INTERFACES;International Journal of Neural Systems;2013-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3