CURVED TRAJECTORY PREDICTION USING A SELF-ORGANIZING NEURAL NETWORK

Author:

MARSHALL JONATHAN A.1,SRIKANTH VISWANATH1

Affiliation:

1. Department of Computer Science University of North Carolina at Chapel Hill, USA

Abstract

Existing neural network models are capable of tracking linear trajectories of moving visual objects. This paper describes an additional neural mechanism, disfacilitation, that enhances the ability of a visual system to track curved trajectories. The added mechanism combines information about an object's trajectory with information about changes in the object's trajectory, to improve the estimates for the object's next probable location. Computational simulations are presented that show how the neural mechanism can learn to track the speed of objects and how the network operates to predict the trajectories of accelerating and decelerating objects.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new image prediction model based on spatio-temporal techniques;The Visual Computer;2007-04-11

2. A Model for 3-D Structure and Motion Perception from Image Sequences;AIAA Modeling and Simulation Technologies Conference and Exhibit;2005-06-19

3. Predictive Modeling Techniques in Prostate Cancer;Molecular Urology;2001-12

4. Research on Fish Intelligence for Fish Trajectory Prediction Based on Neural Network;Lecture Notes in Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3