Real-Time Multi-Modal Estimation of Dynamically Evoked Emotions Using EEG, Heart Rate and Galvanic Skin Response

Author:

Val-Calvo Mikel12,Álvarez-Sánchez José Ramón1,Ferrández-Vicente Jose Manuel2,Díaz-Morcillo Alejandro2,Fernández-Jover Eduardo3

Affiliation:

1. Departamento de Inteligencia Artificial, UNED, Juan del Rosal, 16, Madrid, E-28040, Spain

2. Departamento de Tecnologías de la Información y las Comunicaciones, Univ. Politécnica de Cartagena, Edif. Antigones, Pza del Hospital, 1, E-30202 Cartagena, Spain

3. Instituto de Bioingeniería, Univ. Miguel Hernández, Av. de la Universidad s/n. E-03202 Elche, Spain and CIBER-BBN, Spain

Abstract

Emotion estimation systems based on brain and physiological signals such as electro encephalography (EEG), blood-volume pressure (BVP), and galvanic skin response (GSR) are gaining special attention in recent years due to the possibilities they offer. The field of human–robot interactions (HRIs) could benefit from a broadened understanding of the brain and physiological emotion encoding, together with the use of lightweight software and cheap wearable devices, and thus improve the capabilities of robots to fully engage with the users emotional reactions. In this paper, a previously developed methodology for real-time emotion estimation aimed for its use in the field of HRI is tested under realistic circumstances using a self-generated database created using dynamically evoked emotions. Other state-of-the-art, real-time approaches address emotion estimation using constant stimuli to facilitate the analysis of the evoked responses, remaining far from real scenarios since emotions are dynamically evoked. The proposed approach studies the feasibility of the emotion estimation methodology previously developed, under an experimentation paradigm that imitates a more realistic scenario involving dynamically evoked emotions by using a dramatic film as the experimental paradigm. The emotion estimation methodology has proved to perform on real-time constraints while maintaining high accuracy on emotion estimation when using the self-produced dynamically evoked emotions multi-signal database.

Funder

Fundacion Seneca, Agencia de Ciencia y Tecnologia de la Region de Murcia

Ministerio de Ciencia, Innovacion y Universidades, y

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3