Characterisation of Haemodynamic Activity in Resting State Networks by Fractal Analysis

Author:

Porcaro Camillo12345,Mayhew Stephen D.2,Marino Marco56,Mantini Dante56,Bagshaw Andrew P.2

Affiliation:

1. Institute of Cognitive Sciences and Technologies (ISTC) — National Research Council (CNR) Rome, Italy

2. Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK

3. S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy

4. Department of Information Engineering — Università, Politecnica delle Marche, Ancona, Italy

5. Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium

6. Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy

Abstract

Intrinsic brain activity is organized into large-scale networks displaying specific structural–functional architecture, known as resting-state networks (RSNs). RSNs reflect complex neurophysiological processes and interactions, and have a central role in distinct sensory and cognitive functions, making it crucial to understand and quantify their anatomical and functional properties. Fractal dimension (FD) provides a parsimonious way of summarizing self-similarity over different spatial and temporal scales but despite its suitability for functional magnetic resonance imaging (fMRI) signal analysis its ability to characterize and investigate RSNs is poorly understood. We used FD in a large sample of healthy participants to differentiate fMRI RSNs and examine how the FD property of RSNs is linked with their functional roles. We identified two clusters of RSNs, one mainly consisting of sensory networks (C1, including auditory, sensorimotor and visual networks) and the other more related to higher cognitive (HCN) functions (C2, including dorsal default mode network and fronto-parietal networks). These clusters were defined in a completely data-driven manner using hierarchical clustering, suggesting that quantification of Blood Oxygen Level Dependent (BOLD) signal complexity with FD is able to characterize meaningful physiological and functional variability. Understanding the mechanisms underlying functional RSNs, and developing tools to study their signal properties, is essential for assessing specific brain alterations and FD could potentially be used for the early detection and treatment of neurological disorders.

Funder

Engineering and Physical Science Research Council (EPSRC), APB

EPSRC Fellowship

The Research Foundation Flanders

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3