BACKPROPAGATION ALGORITHM ADAPTATION PARAMETERS USING LEARNING AUTOMATA

Author:

BEIGY HAMID1,MEYBODI MOHAMMAD R.1

Affiliation:

1. Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

Despite of the many successful applications of backpropagation for training multi–layer neural networks, it has many drawbacks. For complex problems it may require a long time to train the networks, and it may not train at all. Long training time can be the result of the non-optimal parameters. It is not easy to choose appropriate value of the parameters for a particular problem. In this paper, by interconnection of fixed structure learning automata (FSLA) to the feedforward neural networks, we apply learning automata (LA) scheme for adjusting these parameters based on the observation of random response of neural networks. The main motivation in using learning automata as an adaptation algorithm is to use its capability of global optimization when dealing with multi-modal surface. The feasibility of proposed method is shown through simulations on three learning problems: exclusive-or, encoding problem, and digit recognition. The simulation results show that the adaptation of these parameters using this method not only increases the convergence rate of learning but it increases the likelihood of escaping from the local minima.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3