A Hybrid Neural Network of Addressable and Content-Addressable Memory

Author:

Ma Jinwen1

Affiliation:

1. Department of Information Science, School of Mathematical Sciences, and LMAM, Peking University, Beijing, 100871, China

Abstract

We investigate the memory structure and retrieval of the brain and propose a hybrid neural network of addressable and content-addressable memory which is a special database model and can memorize and retrieve any piece of information (a binary pattern) both addressably and content-addressably. The architecture of this hybrid neural network is hierarchical and takes the form of a tree of slabs which consist of binary neurons with the same array. Simplex memory neural networks are considered as the slabs of basic memory units, being distributed on the terminal vertexes of the tree. It is shown by theoretical analysis that the hybrid neural network is able to be constructed with Hebbian and competitive learning rules, and some other important characteristics of its learning and memory behavior are also consistent with those of the brain. Moreover, we demonstrate the hybrid neural network on a set of ten binary numeral patters.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3