IDENTIFICATION OF NONLINEAR OSCILLATORY ACTIVITY EMBEDDED IN BROADBAND NEURAL SIGNALS

Author:

VEJMELKA MARTIN1,PALUŠ MILAN1,ŠUŠMÁKOVÁ KRISTÍNA12

Affiliation:

1. Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, 182 07 Prague 8, Czech Republic

2. Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic

Abstract

Oscillatory phenomena in the brain activity and their synchronization are frequently studied using mathematical models and analytic tools derived from nonlinear dynamics. In many experimental situations, however, neural signals have a broadband character and if oscillatory activity is present, its dynamical origin is unknown. To cope with these problems, a framework for detecting nonlinear oscillatory activity in broadband time series is presented. First, a narrow-band oscillatory mode is extracted from a broadband background. Second, it is tested whether the extracted mode is significantly different from linearly filtered noise, modelled as a linear stochastic process possibly passed through a static nonlinear transformation. If a nonlinear oscillatory mode is positively detected, further analysis using nonlinear approaches such as the phase synchronization analysis can potentially bring new information. For linear processes, however, standard approaches such as the coherence analysis are more appropriate and provide sufficient description of underlying interactions with smaller computational effort. The method is illustrated in a numerical example and applied to analyze experimentally obtained human EEG time series from a sleeping subject.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3