EVOLVING EDITED k-NEAREST NEIGHBOR CLASSIFIERS

Author:

GIL-PITA ROBERTO1,YAO XIN23

Affiliation:

1. Signal Theory and Communications Department, University of Alcalá, Alcalá de Henares, Madrid 28805, Spain

2. The Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA), School of Computer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom

3. Nature Inspired Computation and Applications Laboratory (NICAL), Department of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China

Abstract

The k-nearest neighbor method is a classifier based on the evaluation of the distances to each pattern in the training set. The edited version of this method consists of the application of this classifier with a subset of the complete training set in which some of the training patterns are excluded, in order to reduce the classification error rate. In recent works, genetic algorithms have been successfully applied to determine which patterns must be included in the edited subset. In this paper we propose a novel implementation of a genetic algorithm for designing edited k-nearest neighbor classifiers. It includes the definition of a novel mean square error based fitness function, a novel clustered crossover technique, and the proposal of a fast smart mutation scheme. In order to evaluate the performance of the proposed method, results using the breast cancer database, the diabetes database and the letter recognition database from the UCI machine learning benchmark repository have been included. Both error rate and computational cost have been considered in the analysis. Obtained results show the improvement achieved by the proposed editing method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3