Generalized Models for the Classification of Abnormal Movements in Daily Life and its Applicability to Epilepsy Convulsion Recognition

Author:

Villar José R.1,Vergara Paula1,Menéndez Manuel23,de la Cal Enrique1,González Víctor M.4,Sedano Javier5

Affiliation:

1. Computer Science Department, University of Oviedo, EIMEM, c/Independencia 13, Oviedo, Asturias 33004, Spain

2. Cellular Morphology and Biology Department, University of Oviedo, School of Medicine, Avda. Julián Clavería 6, Oviedo, Asturias 33005, Spain

3. Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile

4. Control and Automation Department, University of Oviedo, Campus de Viesques, Edificio Departamental Oeste, Módulo 2, Gijón, Asturias 33204, Spain

5. Instituto Tecnológico de Castilla y León, Polígono Industrial Villalonquéjar. c/López Bravo, 70, Burgos, Burgos 09001, Spain

Abstract

The identification and the modeling of epilepsy convulsions during everyday life using wearable devices would enhance patient anamnesis and monitoring. The psychology of the epilepsy patient penalizes the use of user-driven modeling, which means that the probability of identifying convulsions is driven through generalized models. Focusing on clonic convulsions, this pre-clinical study proposes a method for generating a type of model that can evaluate the generalization capabilities. A realistic experimentation with healthy participants is performed, each with a single 3D accelerometer placed on the most affected wrist. Unlike similar studies reported in the literature, this proposal makes use of [Formula: see text] cross-validation scheme, in order to evaluate the generalization capabilities of the models. Event-based error measurements are proposed instead of classification-error measurements, to evaluate the generalization capabilities of the model, and Fuzzy Systems are proposed as the generalization modeling technique. Using this method, the experimentation compares the most common solutions in the literature, such as Support Vector Machines, [Formula: see text]-Nearest Neighbors, Decision Trees and Fuzzy Systems. The event-based error measurement system records the results, penalizing those models that raise false alarms. The results showed the good generalization capabilities of Fuzzy Systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3