Affiliation:
1. Department of Electrical Engineering, Faculty of Science and Technology, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama, 223–8522, Japan
Abstract
In this paper, we propose a successive learning method in hetero-associative memories, such as Bidirectional Associative Memories and Multidirectional Associative Memories, using chaotic neural networks. It can distinguish unknown data from the stored known data and can learn the unknown data successively. The proposed model makes use of the difference in the response to the input data in order to distinguish unknown data from the stored known data. When input data is regarded as unknown data, it is memorized. Furthermore, the proposed model can estimate and learn correct data from noisy unknown data or incomplete unknown data by considering the temporal summation of the continuous data input. In addition, similarity to the physiological facts in the olfactory bulb of a rabbit found by Freeman are observed in the behavior of the proposed model. A series of computer simulations shows the effectiveness of the proposed model.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献