Kernel Collaborative Representation-Based Automatic Seizure Detection in Intracranial EEG

Author:

Yuan Shasha12,Zhou Weidong12,Yuan Qi12,Li Xueli12,Wu Qi3,Zhao Xiuhe3,Wang Jiwen3

Affiliation:

1. School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China

2. Suzhou Institute of Shandong University, Suzhou 215123, P. R. China

3. Qilu Hospital, Shandong University, Jinan 250100, P. R. China

Abstract

Automatic seizure detection is of great significance in the monitoring and diagnosis of epilepsy. In this study, a novel method is proposed for automatic seizure detection in intracranial electroencephalogram (iEEG) recordings based on kernel collaborative representation (KCR). Firstly, the EEG recordings are divided into 4s epochs, and then wavelet decomposition with five scales is performed. After that, detail signals at scales 3, 4 and 5 are selected to be sparsely coded over the training sets using KCR. In KCR, l2-minimization replaces l1-minimization and the sparse coefficients are computed with regularized least square (RLS), and a kernel function is utilized to improve the separability between seizure and nonseizure signals. The reconstructed residuals of each EEG epoch associated with seizure and nonseizure training samples are compared and EEG epochs are categorized as the class that minimizes the reconstructed residual. At last, a multi-decision rule is applied to obtain the final detection decision. In total, 595 h of iEEG recordings from 21 patients with 87 seizures are employed to evaluate the system. The average sensitivity of 94.41%, specificity of 96.97%, and false detection rate of 0.26/h are achieved. The seizure detection system based on KCR yields both a high sensitivity and a low false detection rate for long-term EEG.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3