ARTIFICIAL NEURAL NETWORK BASED SOFT ESTIMATOR FOR ESTIMATION OF TRANSDUCER STATIC NONLINEARITY

Author:

SINGH AMAR PARTAP1,KAMAL TARA SINGH2,KUMAR SHAKTI3

Affiliation:

1. Sant Harchand Singh Longowal Central Institute of Engineering and Technology (SHSL-CIET), Longowal-148106 (District Sargrur), Punjab, India

2. Guru Teg Bahadur Khalsa Institute of Engineering and Technology, Chhapianwali (Malout)-152107 (District Muktsar), Punjab, India

3. Haryana Engineering College, Jagadhri-135003, Haryana, India

Abstract

In this work, the development of an Artificial Neural Network (ANN) based soft estimator is reported for the estimation of static-nonlinearity associated with the transducers. Under the realm of ANN based transducer modeling, only two neural models have been suggested to estimate the static-nonlinearity associated with the transducers with quite successful results. The first existing model is based on the concept of a functional link artificial neural network (FLANN) trained with μ-LMS (Least Mean Squares) learning algorithm. The second one is based on the architecture of a single layer linear ANN trained with α-LMS learning algorithm. However, both these models suffer from the problem of slow convergence (learning). In order to circumvent this problem, it is proposed to synthesize the direct model of transducers using the concept of a Polynomial-ANN (polynomial artificial neural network) trained with Levenberg-Marquardt (LM) learning algorithm. The proposed Polynomial-ANN oriented transducer model is implemented based on the topology of a single-layer feed-forward back-propagation-ANN. The proposed neural modeling technique provided an extremely fast convergence speed with increased accuracy for the estimation of transducer static nonlinearity. The results of convergence are very stimulating with the LM learning algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3