Electroencephalography-Derived Prognosis of Functional Recovery in Acute Stroke Through Machine Learning Approaches

Author:

Chiarelli Antonio Maria1,Croce Pierpaolo1,Assenza Giovanni2,Merla Arcangelo1,Granata Giuseppe3,Giannantoni Nadia Mariagrazia4,Pizzella Vittorio1,Tecchio Franca5,Zappasodi Filippo1

Affiliation:

1. Department of Neuroscience, Imaging and Clinical Sciences and the Institute for Advanced Biomedical Technologies, Università G. d’Annunzio, Chieti, 66100, Italy

2. Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy

3. Fondazione Policlinico A. Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy

4. Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano (EOC), Lugano, Switzerland

5. Laboratory of Electrophysiology for Translational NeuroScience (LET’S), Istituto di Scienze e Teconologie della Cognizione (ISTC) - Consiglio Nazionale delle Ricerche (CNR), Rome, Italy

Abstract

Stroke, if not lethal, is a primary cause of disability. Early assessment of markers of recovery can allow personalized interventions; however, it is difficult to deliver indexes in the acute phase able to predict recovery. In this perspective, evaluation of electrical brain activity may provide useful information. A machine learning approach was explored here to predict post-stroke recovery relying on multi-channel electroencephalographic (EEG) recordings of few minutes performed at rest. A data-driven model, based on partial least square (PLS) regression, was trained on 19-channel EEG recordings performed within 10 days after mono-hemispheric stroke in 101 patients. The band-wise (delta: 1–4[Formula: see text]Hz, theta: 4–7[Formula: see text]Hz, alpha: 8–14[Formula: see text]Hz and beta: 15–30[Formula: see text]Hz) EEG effective powers were used as features to predict the recovery at 6 months (based on clinical status evaluated through the NIH Stroke Scale, NIHSS) in an optimized and cross-validated framework. In order to exploit the multimodal contribution to prognosis, the EEG-based prediction of recovery was combined with NIHSS scores in the acute phase and both were fed to a nonlinear support vector regressor (SVR). The prediction performance of EEG was at least as good as that of the acute clinical status scores. A posteriori evaluation of the features exploited by the analysis highlighted a lower delta and higher alpha activity in patients showing a positive outcome, independently of the affected hemisphere. The multimodal approach showed better prediction capabilities compared to the acute NIHSS scores alone ([Formula: see text] versus [Formula: see text], AUC = 0.80 versus AUC = 0.70, [Formula: see text]). The multimodal and multivariate model can be used in acute phase to infer recovery relying on standard EEG recordings of few minutes performed at rest together with clinical assessment, to be exploited for early and personalized therapies. The easiness of performing EEG may allow such an approach to become a standard-of-care and, thanks to the increasing number of labeled samples, further improving the model predictive power.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3