DETECTING LOW DIMENSIONAL DYNAMICS IN BIOLOGICAL EXPERIMENTS

Author:

PEI XING1,MOSS FRANK1

Affiliation:

1. Laboratory of Neurodynamics, Department of Physics and Astronomy, University of Missouri – St. Louis, St. Louis, MO 63121, USA

Abstract

We discuss the well-known problems associated with efforts to detect and characterize chaos and other low dimensional dynamics in biological settings. We propose a new method which shows promise for addressing these problems, and we demonstrate its effectiveness in an experiment with the crayfish sensory system. Recordings of action potentials in this system are the data. We begin with a pair of assumptions: that the times of firings of neural action potentials are largely determined by high dimensional random processes or “noise”; and that most biological files are non stationary, so that only relatively short files can be obtained under approximately constant conditions. The method is thus statistical in nature. It is designed to recognize individual “events” in the form of particular sequences of time intervals between action potentials which are the signatures of certain well defined dynamical behaviors. We show that chaos can be distinguished from limit cycles, even when the dynamics is heavily contaminated with noise. Extracellular recordings from the crayfish caudal photoreceptor, obtained while hydrodynamically stimulating the array of hair receptors on the tailfan, are used to illustrate the method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling effects of neural fluctuations and inter-scale interactions;Chaos: An Interdisciplinary Journal of Nonlinear Science;2018-10

2. Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model;Chaos: An Interdisciplinary Journal of Nonlinear Science;2011-12

3. Introduction to Focus Issue: Nonlinear and Stochastic Physics in Biology;Chaos: An Interdisciplinary Journal of Nonlinear Science;2011-12

4. References;Physics of Life;2007

5. NOISE IN NEURAL NETWORKS — IN TERMS OF RELATIONS;Fluctuation and Noise Letters;2004-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3