Kuramoto Model-Based Analysis Reveals Oxytocin Effects on Brain Network Dynamics

Author:

Zheng Shuhan1,Liang Zhichao1,Qu Youzhi1,Wu Qingyuan2,Wu Haiyan3,Liu Quanying4

Affiliation:

1. Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China

2. State Key Laboratory of Cognitive, Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing, Normal University, 100875 Beijing, P. R. China

3. Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau, P. R. China

4. Shenzhen Key Laboratory of Smart Healthcare Engineering, Southern University of Science and Technology, Shenzhen 518005, P. R. China

Abstract

The oxytocin effects on large-scale brain networks such as Default Mode Network (DMN) and Frontoparietal Network (FPN) have been largely studied using fMRI data. However, these studies are mainly based on the statistical correlation or Bayesian causality inference, lacking interpretability at the physical and neuroscience level. Here, we propose a physics-based framework of the Kuramoto model to investigate oxytocin effects on the phase dynamic neural coupling in DMN and FPN. Testing on fMRI data of 59 participants administrated with either oxytocin or placebo, we demonstrate that oxytocin changes the topology of brain communities in DMN and FPN, leading to higher synchronization in the FPN and lower synchronization in the DMN, as well as a higher variance of the coupling strength within the DMN and more flexible coupling patterns at group level. These results together indicate that oxytocin may increase the ability to overcome the corresponding internal oscillation dispersion and support the flexibility in neural synchrony in various social contexts, providing new evidence for explaining the oxytocin modulated social behaviors. Our proposed Kuramoto model-based framework can be a potential tool in network neuroscience and offers physical and neural insights into phase dynamics of the brain.

Funder

the National Natural Science Foundation of China

Guangdong Natural Science Foundation Joint Fund

Shenzhen Science and Technology Innovation Committee

Shenzhen Key Laboratory of Smart Healthcare Engineering

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3