ADVANCES IN BLIND SOURCE SEPARATION (BSS) AND INDEPENDENT COMPONENT ANALYSIS (ICA) FOR NONLINEAR MIXTURES

Author:

JUTTEN CHRISTIAN1,KARHUNEN JUHA2

Affiliation:

1. Laboratory of Images and Signals (UMR CNRS 5083, INPG, UJF), 46 avenue Félix Viallet, 38031 Grenoble Cedex, France

2. Neural Networks Research Centre, Helsinki University of Technology, P.O. Box 5400, FIN-02015 HUT, Espoo, Finland

Abstract

In this paper, we review recent advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixing models. After a general introduction to BSS and ICA, we discuss in more detail uniqueness and separability issues, presenting some new results. A fundamental difficulty in the nonlinear BSS problem and even more so in the nonlinear ICA problem is that they provide non-unique solutions without extra constraints, which are often implemented by using a suitable regularization. In this paper, we explore two possible approaches. The first one is based on structural constraints. Especially, post-nonlinear mixtures are an important special case, where a nonlinearity is applied to linear mixtures. For such mixtures, the ambiguities are essentially the same as for the linear ICA or BSS problems. The second approach uses Bayesian inference methods for estimating the best statistical parameters, under almost unconstrained models in which priors can be easily added. In the later part of this paper, various separation techniques proposed for post-nonlinear mixtures and general nonlinear mixtures are reviewed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3