BLOOD CELL IDENTIFICATION USING A SIMPLE NEURAL NETWORK

Author:

KHASHMAN ADNAN1

Affiliation:

1. Electrical & Electronic Engineering Department, Near East University Lefkosa, Mersin 10, Turkey

Abstract

Classification of blood cell types can be time consuming and susceptible to error due to the different morphological features of the cells. This paper presents a blood cell identification system that simulates a human visual inspection and identification of the three blood cell types. The proposed system uses global pattern averaging to extract cell features, and a neural network to classify the cell type. Two neural networks are investigated and a comparison between these networks is drawn. Experimental results suggest that the proposed system provides fast, simple and efficient identification which can be used in automating laboratory reporting.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oil price prediction using a supervised neural network;International Journal of Oil, Gas and Coal Technology;2019

2. Using Neural Networks and Hough Transform for Leukocytes Differentiation in Blood Count Images;Computational Science and Its Applications – ICCSA 2019;2019

3. Literature Review;Advances in Theory and Practice of Emerging Markets;2017-10-20

4. Automatic system for grading banana using GLCM texture feature extraction and neural network arbitrations;Journal of Food Process Engineering;2017-06-16

5. A simple and practical review of over-fitting in neural network learning;International Journal of Applied Pattern Recognition;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3