SISO Nonlinear System Identification Using a Fuzzy-Neural Hybrid System

Author:

Lin Cheng-Jian1

Affiliation:

1. Department of Electronic Engineering, Nan-Kai College of Technology & Commerce, Tsaotun, Taiwan, R.O.C.

Abstract

This paper describes a fuzzy-neural hybrid system for the identification of nonlinear dynamic systems with unknown parameters. The proposed model takes the form of a context-sensitive module in which a fuzzy system is used as a function module and a multilayer neural network is used as a context module. Fuzzy-neural hybrid systems with a decomposed structures reduce complexity and thus accelerate the learning process. Also, the parameters of a fuzzy system have clear physical meanings, which makes it possible to incorporate a priori knowledge into the selection of initial parameter values and constraints among parameter values. Since hybrid systems correspond to networks, it is feasible to construct fast, parallel devices to implement these models for practical applications. The gradient descent method for the adjustment of parameters in hybrid systems is discussed. Simulations demonstrate that the hybrid identification models suggested here for SISO dynamic systems are quite effective.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Stages Interval Fuzzy Model for Forecasting Wind Power in Microgrids;2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE);2024-06-30

2. Gaussian Process to Takagi-Sugeno Fuzzy Model Using Supervised Clustering;2023 IEEE International Conference on Fuzzy Systems (FUZZ);2023-08-13

3. Fuzzy Interval Oxygen Estimation in an Electric Arc Furnace from Scarce Output Measurements;2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE);2022-07-18

4. Lyapunov Theory-Based Fusion Neural Networks for the Identification of Dynamic Nonlinear Systems;International Journal of Neural Systems;2019-10-28

5. REFII Model as a Base for Data Mining Techniques Hybridization with Purpose of Time Series Pattern Recognition;Hybrid Soft Computing Approaches;2015-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3