ACCELERATED LEARNING BY ACTIVE EXAMPLE SELECTION

Author:

ZHANG BYOUNG-TAK1

Affiliation:

1. AI Division, Institute for Computer Science, University of Bonn, Römerstraße 164, D-53117 Bonn, Germany

Abstract

Much previous work on training multilayer neural networks has attempted to speed up the backpropagation algorithm using more sophisticated weight modification rules, whereby all the given training examples are used in a random or predetermined sequence. In this paper we investigate an alternative approach in which the learning proceeds on an increasing number of selected training examples, starting with a small training set. We derive a measure of criticality of examples and present an incremental learning algorithm that uses this measure to select a critical subset of given examples for solving the particular task. Our experimental results suggest that the method can significantly improve training speed and generalization performance in many real applications of neural networks. This method can be used in conjunction with other variations of gradient descent algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Let the force guide you: a performance-based adaptive algorithm for postural training using haptic feedback;Frontiers in Human Neuroscience;2022-11-24

2. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network;Journal of Physics A: Mathematical and Theoretical;2017-11-10

3. Tuning Active Sampling Techniques for Evolutionary Learner from Big Data Sets Review and Discussion;2016

4. Modeling Human-Machine Interaction by Means of a Sample Selection Method;Highlights of Practical Applications of Agents, Multi-Agent Systems, and Sustainability - The PAAMS Collection;2015

5. Sample Selection Based Active Learning for Imbalanced Data;2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3