Neural Oscillation Correlates Chemistry Decision-Making

Author:

Huang Li-Yu1,She Hsiao-Ching1,Jung Tzyy-Ping2

Affiliation:

1. Institute of Education, National Chiao-Tung University, Hsinchu 300, Taiwan

2. Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego La Jolla, California 92093, USA

Abstract

This study explored the electroencephalography (EEG) dynamics during a chemistry-related decision-making task and further examined whether the correctness of the decision-making performance could be reflected by EEG activity. A total of 66 undergraduate students’ EEG were collected while they participated in a chemistry-related decision-making task in which they had to retrieve the relevant chemistry concepts in order to make correct decisions for each task item. The results showed that it was only in the anterior cingulate cortex (ACC) cluster that distinct patterns in EEG dynamics were displayed for the correct and incorrect responses. The logistic regression results indicated that ACC theta power from 300[Formula: see text]ms to 250[Formula: see text]ms before stimulus onset was the most informative factor for estimating the likelihood of making correct decisions in the chemistry-related decision-making task, while it was the ACC low beta power from 150[Formula: see text]ms to 250[Formula: see text]ms after stimulus onset. The results suggested that the ACC theta augmentation before the stimulus onset serves to actively maintain the relevant information for retrieval from long-term memory, while the ACC low beta augmentation after the stimulus onset may serve the function of mapping the encoded stimulus onto the relevant criteria that the given participant has held within his or her mind to guide the decision-making responses.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3