AN ONLINE SELF-ORGANIZING SCHEME FOR PARSIMONIOUS AND ACCURATE FUZZY NEURAL NETWORKS

Author:

WANG NING1,ER MENG JOO2,MENG XIAN-YAO3,LI XIANG4

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian, 116026, China

2. School of EEE, Nanyang Technological University, Singapore, 639798, Singapore

3. Information Science and Technology College, Dalian Maritime University, Dalian, 116026, China

4. Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 638075, Singapore

Abstract

In this paper, an online self-organizing scheme for Parsimonious and Accurate Fuzzy Neural Networks (PAFNN), and a novel structure learning algorithm incorporating a pruning strategy into novel growth criteria are presented. The proposed growing procedure without pruning not only simplifies the online learning process but also facilitates the formation of a more parsimonious fuzzy neural network. By virtue of optimal parameter identification, high performance and accuracy can be obtained. The learning phase of the PAFNN involves two stages, namely structure learning and parameter learning. In structure learning, the PAFNN starts with no hidden neurons and parsimoniously generates new hidden units according to the proposed growth criteria as learning proceeds. In parameter learning, parameters in premises and consequents of fuzzy rules, regardless of whether they are newly created or already in existence, are updated by the extended Kalman filter (EKF) method and the linear least squares (LLS) algorithm, respectively. This parameter adjustment paradigm enables optimization of parameters in each learning epoch so that high performance can be achieved. The effectiveness and superiority of the PAFNN paradigm are demonstrated by comparing the proposed method with state-of-the-art methods. Simulation results on various benchmark problems in the areas of function approximation, nonlinear dynamic system identification and chaotic time-series prediction demonstrate that the proposed PAFNN algorithm can achieve more parsimonious network structure, higher approximation accuracy and better generalization simultaneously.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3