A Knowledge-Based Deep Learning Architecture for Aspect-Based Sentiment Analysis

Author:

Alexandridis Georgios1,Aliprantis John1,Michalakis Konstantinos1,Korovesis Konstantinos2,Tsantilas Panagiotis2,Caridakis George1

Affiliation:

1. Cultural Technology Department, University of the Aegean, University Hill, Mytilene 81100, Greece

2. Palo Services, 9, Chavriou Street, Athens 10562, Greece

Abstract

The task of sentiment analysis tries to predict the affective state of a document by examining its content and metadata through the application of machine learning techniques. Recent advances in the field consider sentiment to be a multi-dimensional quantity that pertains to different interpretations (or aspects), rather than a single one. Based on earlier research, the current work examines the said task in the framework of a larger architecture that crawls documents from various online sources. Subsequently, the collected data are pre-processed, in order to extract useful features that assist the machine learning algorithms in the sentiment analysis task. More specifically, the words that comprise each text are mapped to a neural embedding space and are provided to a hybrid, bi-directional long short-term memory network, coupled with convolutional layers and an attention mechanism that outputs the final textual features. Additionally, a number of document metadata are extracted, including the number of a document’s repetitions in the collected corpus (i.e. number of reposts/retweets), the frequency and type of emoji ideograms and the presence of keywords, either extracted automatically or assigned manually, in the form of hashtags. The novelty of the proposed approach lies in the semantic annotation of the retrieved keywords, since an ontology-based knowledge management system is queried, with the purpose of retrieving the classes the aforementioned keywords belong to. Finally, all features are provided to a fully connected, multi-layered, feed-forward artificial neural network that performs the analysis task. The overall architecture is compared, on a manually collected corpus of documents, with two other state-of-the-art approaches, achieving optimal results in identifying negative sentiment, which is of particular interest to certain parties (like for example, companies) that are interested in measuring their online reputation.

Funder

RESEARCH CREATE INNOVATE

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3