Data Mining of Inputs: Analysing Magnitude and Functional Measures

Author:

Gedeon Tamás D.1

Affiliation:

1. Department of Information Engineering, School of Computer Science and Engineering, The University of New South Wales, Sydney 2052, Australia

Abstract

The problem of data encoding and feature selection for training back-propagation neural networks is well known. The basic principles are to avoid encrypting the underlying structure of the data, and to avoid using irrelevant inputs. This is not easy in the real world, where we often receive data which has been processed by at least one previous user. The data may contain too many instances of some class, and too few instances of other classes. Real data sets often include many irrelevant or redundant input fields. This paper examines the use of weight matrix analysis techniques and functional measures using two real (and hence noisy) data sets. The first part of this paper examines the use of the weight matrix of the trained neural network itself to determine which inputs are significant. A new technique is introduced and compared with two other techniques from the literature. We present our experience and results on some satellite data augmented by a terrain model. The task was to predict the forest supra-type based on the available information. A brute force technique eliminating randomly selected inputs was used to validate our approach. The second part of this paper examines the use of measures to determine the functional contribution of inputs to outputs. Inputs which include minor but unique information to the network are more significant than inputs with higher magnitude contribution but providing redundant information, which is also provided by another input. A comparison is made to sensitivity analysis, where the sensitivity of outputs to input perturbation is used as a measure of the significance of inputs. This paper presents a novel functional analysis of the weight matrix based on a technique developed for determining the behavioral significance of hidden neurons. This is compared with the application of the same technique to the training and test data. Finally, a novel aggregation technique is introduced.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Reference3 articles.

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3