Affiliation:
1. Nobel Institute for Neurophysiology, Karolinska Institutet, S-171 77 Stockholm, Sweden
2. Department of Physiology, Umeå University, S-901 87 Umeå, Sweden
Abstract
Spontaneous brain activity is essential for normal brain function. We are studying spontaneous activity in hippocampus at several complexity levels: at the microscopic level by analyzing the role of ion channels, at the mesoscopic level by analyzing the neuronal impulse activity, and at the macroscopic level by computational studies of mean electric fields of cortical network models. We have focused on the role of a subset of hippocampal neurons in the rat — neurons of small size (diameter <10 µ m ). The analysis of spontaneous impulse trains in these neurons, both isolated and in slices, show (i) that impulses vary in amplitude, the magnitude depending on the input signal, suggesting that the amplitude variability may play a role in the information processing of the brain, and (ii) that single ion channel events can trigger neuronal impulses, suggesting that these neurons can function as cellular random generators. The possible role of random generators are investigated by simulating spontaneous activity in a cortical network model, based on a simplified description of the architecture of the CA1 area of hippocampus. The simulations show that such random generators can induce synchronous oscillations in cortical networks. These findings highlight the role of microfluctuations for the global macroactivity of the brain, and stress the importance of the study of channel kinetics for brain physiology.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献