XCSc: A NOVEL APPROACH TO CLUSTERING WITH EXTENDED CLASSIFIER SYSTEM

Author:

SHI LIANG-DONG1,SHI YING-HUAN1,GAO YANG1,SHANG LIN1,YANG YU-BIN1

Affiliation:

1. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China

Abstract

In this paper, we propose a novel approach to clustering noisy and complex data sets based on the eXtend Classifier Systems (XCS). The proposed approach, termed XCSc, has three main processes: (a) a learning process to evolve the rule population, (b) a rule compacting process to remove redundant rules after the learning process, and (c) a rule merging process to deal with the overlapping rules that commonly occur between the clusters. In the first process, we have modified the clustering mechanisms of the current available XCS and developed a new accelerate learning method to improve the quality of the evolved rule population. In the second process, an effective rule compacting algorithm is utilized. The rule merging process is based on our newly proposed agglomerative hierarchical rule merging algorithm, which comprises the following steps: (i) all the generated rules are modeled by a graph, with each rule representing a node; (ii) the vertices in the graph are merged to form a number of sub-graphs (i.e. rule clusters) under some pre-defined criteria, which generates the final rule set to represent the clusters; (iii) each data is re-checked and assigned to a cluster that it belongs to, guided by the final rule set. In our experiments, we compared the proposed XCSc with CHAMELEON, a benchmark algorithm well known for its excellent performance, on a number of challenging data sets. The results show that the proposed approach outperforms CHAMELEON in the successful rate, and also demonstrates good stability.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. XCSF under limited supervision;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2022-07-09

2. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing;International Journal of Neural Systems;2016-12-28

3. Improving data partition schemes in Smart Grids via clustering data streams;Expert Systems with Applications;2014-10

4. Rule networks in learning classifier systems;Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation;2014-07-12

5. A GENETIC GRAPH-BASED APPROACH FOR PARTITIONAL CLUSTERING;International Journal of Neural Systems;2014-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3