PROTEIN SUBCELLULAR MULTI-LOCALIZATION PREDICTION USING A MIN-MAX MODULAR SUPPORT VECTOR MACHINE

Author:

YANG YANG1,LU BAO-LIANG234

Affiliation:

1. Department of Computer Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, China

2. Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

3. Laboratory for Computational Biology, Shanghai Center for Systems Biomedicine, China

4. MOE — Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, 800 Dong Chuan Road, Shanghai, 200240, China

Abstract

Prediction of protein subcellular localization is an important issue in computational biology because it provides important clues for the characterization of protein functions. Currently, much research has been dedicated to developing automatic prediction tools. Most, however, focus on mono-locational proteins, i.e., they assume that proteins exist in only one location. It should be noted that many proteins bear multi-locational characteristics and carry out crucial functions in biological processes. This work aims to develop a general pattern classifier for predicting multiple subcellular locations of proteins. We use an ensemble classifier, called the min-max modular support vector machine (M3-SVM), to solve protein subcellular multi-localization problems; and, propose a module decomposition method based on gene ontology (GO) semantic information for M3-SVM. The amino acid composition with secondary structure and solvent accessibility information is adopted to represent features of protein sequences. We apply our method to two multi-locational protein data sets. The M3-SVMs show higher accuracy and efficiency than traditional SVMs using the same feature vectors. And the GO decomposition also helps to improve prediction accuracy. Moreover, our method has a much higher rate of accuracy than existing subcellular localization predictors in predicting protein multi-localization.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3