Affiliation:
1. School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
Abstract
Nonlinear spiking neural P (NSNP) systems are a recently developed theoretical model, which is abstracted by nonlinear spiking mechanism of biological neurons. NSNP systems have a nonlinear structure and the potential to describe nonlinear dynamic systems. Based on NSNP systems, a novel time series forecasting approach is developed in this paper. During the training phase, a time series is first converted to frequency domain by using a redundant wavelet transform, and then according to the frequency data, an NSNP system is automatically constructed and adaptively trained in frequency domain. Then, the well-trained NSNP system can automatically generate sequence data for future time as the prediction results. Eight benchmark time series data sets and two real-life time series data sets are utilized to compare the proposed approach with several state-of-the-art forecasting approaches. The comparison results demonstrate availability and effectiveness of the proposed forecasting approach.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications,General Medicine
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献