Analysis of the Complexity Measures in the EEG of Schizophrenia Patients

Author:

Akar S. Akdemir1,Kara S.1,Latifoğlu F.2,Bilgiç V.3

Affiliation:

1. Institute of Biomedical Engineering, Fatih University, Buyukcekmece, İstanbul 34500, Turkey

2. Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey

3. Psychiatry Department, Faculty of Medicine, Fatih University, İstanbul 34500, Turkey

Abstract

Complexity measures have been enormously used in schizophrenia patients to estimate brain dynamics. However, the conflicting results in terms of both increased and reduced complexity values have been reported in these studies depending on the patients’ clinical status or symptom severity or medication and age status. The objective of this study is to investigate the nonlinear brain dynamics of chronic and medicated schizophrenia patients using distinct complexity estimators. EEG data were collected from 22 relaxed eyes-closed patients and age-matched healthy controls. A single-trial EEG series of 2[Formula: see text]min was partitioned into identical epochs of 20[Formula: see text]s intervals. The EEG complexity of participants were investigated and compared using approximate entropy (ApEn), Shannon entropy (ShEn), Kolmogorov complexity (KC) and Lempel–Ziv complexity (LZC). Lower complexity values were obtained in schizophrenia patients. The most significant complexity differences between patients and controls were obtained in especially left frontal (F3) and parietal (P3) regions of the brain when all complexity measures were applied individually. Significantly, we found that KC was more sensitive for detecting EEG complexity of patients than other estimators in all investigated brain regions. Moreover, significant inter-hemispheric complexity differences were found in the frontal and parietal areas of schizophrenics’ brain. Our findings demonstrate that the utilizing of sensitive complexity estimators to analyze brain dynamics of patients might be a useful discriminative tool for diagnostic purposes. Therefore, we expect that nonlinear analysis will give us deeper understanding of schizophrenics’ brain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3