Fund Rating Model Based on Finite Normal Mixture Distribution

Author:

Gao Zhangpeng1,Rahman Shahidur2,Rahman Shafiqur3

Affiliation:

1. DBS Bank Ltd., Singapore

2. Department of Economics, Kazakhstan Institute of Management, Economics and Strategic Research, Kazakhstan

3. School of Business Administration, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA

Abstract

This paper proposes a new method of fund rating based on the cross-sectional distribution of fund performance measured by alpha. This distribution-based fund rating model is more flexible and provides more interesting results than current commercial fund rating method used by Morningstar. Unlike Morningstar's rating, this method does not use preset percentiles to rate funds. It is the distribution of alpha that dictates the number of performance groups in a given fund category and time period. The framework is based on the crucial assumption that the expected fund performance may be different, and the difference of the expected fund performance arises from the segmented market information and/or the differentiated ability of mangers to acquire and analyze information. The multimodal shape and formal normality tests prompt us to model the distribution of alpha by finite normal mixture model. We introduce the parametric bootstrap procedure to determine the number of performance groups in the model. We then employ expectation and maximization (EM) algorithm to estimate the model. Based on the estimated posterior probabilities of the fund, we assign the rating to funds. Our empirical results show that the number of performance groups is not fixed and varies across time and fund categories. We observe a clear tendency of the merging of information sets, which implies that the fund market has become gradually more efficient over time as information was well transmitted and analyzed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Economics and Econometrics,Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3