Augmented Reality Training Platform for Neurosurgical Burr Hole Localization

Author:

Baum Zachary M. C.1ORCID,Lasso Andras1,Ryan Sarah1,Ungi Tamas12,Rae Emily1,Zevin Boris2,Levy Ron23,Fichtinger Gabor12

Affiliation:

1. Laboratory for Percutaneous Surgery, School of Computing, Queen’s University, Kingston, Ontario, Canada

2. Department of Surgery, School of Medicine, Queen’s University, Kingston, Ontario, Canada

3. Center for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada

Abstract

Augmented reality (AR) is used in neurosurgery to visualize lesions and plan procedures pre-operatively and intra-operatively, though its use has not been widely adopted in simulation-based neurosurgical training for the same tasks. This work defines metrics to determine performance in drill position and angle identification for neurosurgical training. The metrics were validated intra-operatively and in a simulated training environment, demonstrating that trainees identify drill position and angle faster and more accurately with AR compared with standard techniques. Training using AR and the proposed metrics stands to add value to neurosurgical curricula development.

Funder

Ontario Ministry of Training, Colleges and Universities

Canada Research Chairs

Southeastern Ontario Academic Medical Organization

Collaborative Health Research Project

Publisher

World Scientific Pub Co Pte Lt

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3