QSAR AND PHARMACOPHORE MODELING OF 4-ARYLTHIENO [3, 2-d] PYRIMIDINE DERIVATIVES AGAINST ADENOSINE RECEPTOR OF PARKINSON'S DISEASE

Author:

AHMED SHIEK S. S. J.12,AHAMEETHUNISA A.3,SANTOSH WINKINS1

Affiliation:

1. Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India

2. Computational Biophysics and Neuro Science Laboratory, Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu, 600036, India

3. Department of Bioinformatics, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India

Abstract

A series of 47, 4-arylthieno[3, 2-d] pyrimidine derivatives was subjected to quantitative structure-antiparkinson activity relationships (QSAR) studies to evaluate the antagonist activity towards both adenosine A1 and adenosine A2A targets in Parkinson's drug discovery. QSAR models were derived with the aid of genetic function approximation (GFA) technique using descriptors to make connections between structural parameters and antiparkinson's activity followed by ADMET analysis and pharmacophore model generation. QSAR model was assessed using a test set of 12 compounds for A1 (r2 pred = 0.961), (q2 = 0.912) and 12 compounds for A2a (r2 pred = 0.914), (q2 = 0.781) receptor. The results revealed the significant role of DIPOLE MAG, CHI-V-3-P, WIENER, AREA, SC-2 and PHI-MAG descriptors in the antiparkinson activity of the studied compounds against adenosine A1 and adenosine A2A receptors. Subsequent, ADMET analysis shows 28 compounds can be the better candidates of drug and execution of pharmacophore model, explores the hydrogen bond donor, aromatic ring and hydrophobic groups are the key structural features for the antagonist activity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3