MULTISCALE, MULTIPHYSICS AND MULTIDOMAIN MODELS I: BASIC THEORY

Author:

WEI GUO-WEI123

Affiliation:

1. Department of Mathematics, Michigan State University, MI 48824, USA

2. Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA

3. Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA

Abstract

This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors, and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e. electrostatic) solvation, non-polar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics, and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace–Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson–Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst–Planck (NP) equations for the dynamics of charged solvent species, generalized Navier–Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent–solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent–solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fitted meshes on an unfitted grid based on scaled boundary finite element analysis;Engineering Analysis with Boundary Elements;2024-09

2. Kernel free boundary integral method for 3D incompressible flow and linear elasticity equations on irregular domains;Computer Methods in Applied Mechanics and Engineering;2023-09

3. Pulsed Electric Field-Induced Modification of Proteins: A Comprehensive Review;Food and Bioprocess Technology;2023-06-03

4. A weak Galerkin method for elasticity interface problems;Journal of Computational and Applied Mathematics;2023-02

5. Analytical Approaches of EMB at Multiple Scales;Physical Principles of Electro-Mechano-Biology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3