Computational analysis of hereditary spastic paraplegia mutations in the kinesin motor domains of KIF1A and KIF5A

Author:

Mahase Vidhyanand1,Sobitan Adebiyi1,Johnson Christina1,Cooper Farion1,Xie Yixin2,Li Lin23,Teng Shaolei1ORCID

Affiliation:

1. Department of Biology, Howard University, Washington, D.C., 20059 USA

2. Computational Science Program, University of Texas at El Paso, El Paso, Texas 79902, USA

3. Department of Physics, University of Texas at El Paso, El Paso, Texas 79902, USA

Abstract

Hereditary spastic paraplegias (HSPs) are a genetically heterogeneous collection of neurodegenerative disorders categorized by progressive lower-limb spasticity and frailty. The complex HSP forms are characterized by various neurological features including progressive spastic weakness, urinary sphincter dysfunction, extra pyramidal signs and intellectual disability (ID). The kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motors involved in intracellular transport. Kinesins directionally transport membrane vesicles, protein complexes, and mRNAs along neurites, thus playing important roles in neuronal development and function. Recent genetic studies have identified kinesin mutations in patients with HSPs. In this study, we used the computational approaches to investigate the 40 missense mutations associated with HSP and ID in KIF1A and KIF5A. We performed homology modeling to construct the structures of kinesin–microtubule binding domain and kinesin–tubulin complex. We applied structure-based energy calculation methods to determine the effects of missense mutations on protein stability and protein–protein interaction. The results revealed that the most of disease-causing mutations could change the folding free energy of kinesin motor domain and the binding free energy of kinesin–tubulin complex. We found that E253K associated with ID in KIF1A decrease the protein stability of kinesin motor domains. We showed that the HSP mutations located in kinesin–tubulin complex interface, such as K253N and R280C in KIF5A, can destabilize the kinesin–tubulin complex. The computational analysis provides useful information for understanding the roles of kinesin mutations in the development of ID and HSPs.

Funder

National Science Foundation

Howard University

National Institutes of Health

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3