Affiliation:
1. Wuhan Textile and Apparel Digital Engineering, Technology Research Center Wuhan Textile University, Wuhan, Hubei 430073, P. R. China
Abstract
To investigate the thermal behavior of complex model with amorphous region and crystallization region of cellulose II, the structures and properties of cellulose II, amorphous chain and their combined models were studied by molecular dynamics simulation. The results showed that the amorphous chain is more susceptible to temperature than the cellulose II. It can form anti-parallel structure similar to cellulose II at high temperature. In the complex model, one end of the amorphous chain is fixed to form hydrogen bonds with the cellulose II, and the other end is not. At 300[Formula: see text]K, the free part of amorphous chain is approximately perpendicular to the axial direction of the cellulose II. When the temperature increases, the free part of amorphous chain adheres to the surface of cellulose II. The free part of amorphous chain did not form hydrogen bond with the cellulose II. The formation of amorphous chain and surface of the cellulose II is a zipper process at 450[Formula: see text]K. Furthermore, water molecules penetrate into the inter-space of the amorphous and crystalline regions. The probability of hydrogen bonds between water molecules and the complex model was less than 8.21% which explains why cellulose is insoluble in water. These conclusions provide a guiding significance for the dissolution mechanism of cellulose.
Funder
Scientific Research Project of Hubei key laboratory of biomass fiber and ecological dyeing and finishing
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献