Affiliation:
1. Institut für Informatik, Universität Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
Abstract
A convex polytope can either be described as convex hull of vertices or as solution set of a finite number of linear inequalities and equations. Whereas both representations are equivalent from a theoretical point of view, they are not when optimization problems over the polytope have to be solved. It is a challenging task to convert one description into the other. In this paper we address the efficient computation of the facet structure of several polytopes associated with combinatorial optimization problems. New results are presented which are of interest for theoretical investigations as well as for practical optimization.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献