Line-Constrained k-Median, k-Means, and k-Center Problems in the Plane

Author:

Wang Haitao1,Zhang Jingru1

Affiliation:

1. Department of Computer Science, Utah State University, Logan, Utah 84322, USA

Abstract

The (weighted) [Formula: see text]-median, [Formula: see text]-means, and [Formula: see text]-center problems in the plane are known to be NP-hard. In this paper, we study these problems with an additional constraint that requires the sought [Formula: see text] facilities to be on a given line. We present efficient algorithms for various distance measures such as [Formula: see text]. We assume that all [Formula: see text] weighted points are given sorted by their projections on the given line. For [Formula: see text]-median, our algorithms for [Formula: see text] and [Formula: see text] metrics run in [Formula: see text] time and [Formula: see text] time, respectively. For [Formula: see text]-means, which is defined only on the squared [Formula: see text] distance, we give an [Formula: see text] time algorithm. For [Formula: see text]-center, our algorithms run in [Formula: see text] time for all three metrics, and in [Formula: see text] time for the unweighted version under [Formula: see text] and [Formula: see text] metrics. While our results for the [Formula: see text]-center problem are optimal, the results for the [Formula: see text]-median problem almost match the best algorithms for the corresponding one-dimensional problems.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variants of Euclidean k-Center Clusterings;Lecture Notes in Computer Science;2023-12-09

2. The Line-Constrained Maximum Coverage Facility Location Problem;Combinatorial Optimization and Applications;2023-12-09

3. A generalized $ k $-means problem for clustering and an ADMM-based $ k $-means algorithm;Journal of Industrial and Management Optimization;2023

4. The Coverage Problem by Aligned Disks;International Journal of Computational Geometry & Applications;2022-12-12

5. Rearranging a sequence of points onto a line;Computational Geometry;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3