Affiliation:
1. Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
Abstract
Determining the best shape to fit a set of points is a fundamental problem in many areas of computer science. We present an algorithm to approximate the k-flat that best fits a set of n points with n - m outliers. This problem generalizes the smallest m-enclosing ball, infinite cylinder, and slab. Our algorithm gives an arbitrary constant factor approximation in O(nk+2/m) time, regardless of the dimension of the point set. While our upper bound nearly matches the lower bound, the algorithm may not be feasible for large values of k. Fortunately, for some practical sets of inliers, we reduce the running time to O(nk+2/mk+1), which is linear when m = Ω(n).
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献