COMPUTING ROUNDNESS IS EASY IF THE SET IS ALMOST ROUND

Author:

DEVILLERS OLIVIER1,RAMOS PEDRO A.2

Affiliation:

1. INRIA, BP93, 06092 Sophia Antipolis, France

2. Departamento de Matemáticas, Universidad de Alcalá, Apartado de Correos 28871, Alcalá de Henares, Spain

Abstract

In this paper we address the problem of computing the thinnest annulus containing a set of points S ⊂ Rd. For d = 2, we show that the problem can be solved in O(n) expected time for a fairly general family of almost round sets, by using a slight modification of Sharir and Welzl's algorithm for solving LP-type problems. We also show that, for points in convex position, the problem can be solved in (O(n) deterministic time using linear programming. For d = 2 and d = 3, we propose a discrete local optimization approach. Despite the extreme simplicity and worst case O(nd+1) complexity of the algorithm, we give empirical evidence that the algorithm performs very well (close to linear time) if the input is almost round. We also present some theoretical results that give a partial explanation of this behavior: although the number of local minima may be quadratic (already for d = 2), almost round configurations of points having more than one local minimum are very unlikely to be encountered in practice.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Certified Efficient Global Roundness Evaluation;Journal of Optimization Theory and Applications;2020-06-12

2. Minimum zone evaluation of roundness using hybrid global search approach;The International Journal of Advanced Manufacturing Technology;2017-04-10

3. Optimizing a constrained convex polygonal annulus;Journal of Discrete Algorithms;2005-03

4. Culling a Set of Points for Roundness or Cylindricity Evaluations;International Journal of Computational Geometry & Applications;2003-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3