METRIC GRAPH RECONSTRUCTION FROM NOISY DATA

Author:

AANJANEYA MRIDUL1,CHAZAL FREDERIC2,CHEN DANIEL3,GLISSE MARC2,GUIBAS LEONIDAS4,MOROZOV DMITRIY5

Affiliation:

1. Computer Science Department, Stanford University, Gates 204, 353 Serra Mall, Stanford, California 94305, USA

2. GEOMETRICA, INRIA Saclay - Île-de-France, 2-4, rue Jacques Monod, Orsay, 91893 Cedex, France

3. Computer Science Department, Stanford University, Clark S297, 318 Campus Drive, Stanford, California 94305, USA

4. Computer Science Department, Stanford University, Clark S293, 318 Campus Drive, Stanford, California 94305, USA

5. Visualization Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 50F-1650, Berkeley, California 94720, USA

Abstract

Many real-world data sets can be viewed of as noisy samples of special types of metric spaces called metric graphs.19 Building on the notions of correspondence and Gromov-Hausdorff distance in metric geometry, we describe a model for such data sets as an approximation of an underlying metric graph. We present a novel algorithm that takes as an input such a data set, and outputs a metric graph that is homeomorphic to the underlying metric graph and has bounded distortion of distances. We also implement the algorithm, and evaluate its performance on a variety of real world data sets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vietoris–Rips complexes of metric spaces near a metric graph;Journal of Applied and Computational Topology;2023-05-15

2. Distance distributions and inverse problems for metric measure spaces;Studies in Applied Mathematics;2022-08-10

3. On the Reconstruction of Geodesic Subspaces of ℝN;International Journal of Computational Geometry & Applications;2022-03

4. Local Versus Global Distances for Zigzag and Multi-Parameter Persistence Modules;Association for Women in Mathematics Series;2022

5. Stable topological signatures for metric trees through graph approximations;Pattern Recognition Letters;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3