FINITE REPRESENTATIONS OF REAL PARAMETRIC CURVES AND SURFACES

Author:

BAJAJ CHANDRAJIT L.1,ROYAPPA ANDREW V.2

Affiliation:

1. Department of Computer Sciences Purdue University, West Lafayette, Indiana 47907, USA

2. Computer Science Department, University of New Hampshire, Durham, NH 03824, USA

Abstract

Global parameterizations of parametric algebraic curves or surfaces are defined over infinite parameter domains. Considering parameterizations in terms of rational functions that have real coefficients and vary over real parameter values, we show how to replace one global parameterization with a finite number of alternate bounded parameterizations, each defined over a fixed, bounded part of the real parameter domain space. The new bounded parameterizations together generate all real points of the old one and in particular the points corresponding to infinite parameter values in the old domain. We term such an alternate finite set of bounded parameterizations a finite representation of a real parametric curve or surface. Two solutions are presented for real parametric varieties of arbitrary dimension n. In the first method, a real parametric variety of dimension n is finitely represented in a piecewise fashion by 2n bounded parameterizations with individual pieces meeting with C continuity; each bounded parameterization is a map from a unit simplex of the real parameter domain space. In the second method, only a single bounded parameterization is used; it is a map from the unit hypersphere centered at the origin of the real parameter domain space. Both methods start with an arbitrary real parameterization of a real parametric variety and apply projective domain transformations of different types to yield the new bounded parameterizations. Both these methods are implementable in a straightforward fashion. Applications of these results include displaying entire real parametric curves and surfaces (except those real points generated by complex parameter values), computing normal parameterizations of curves and surfaces (settling an open problem for quadric surfaces).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sufficient conditions for the surjectivity of radical curve parametrizations;Journal of Algebra;2024-02

2. A note about rational surfaces as unions of affine planes;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-02-18

3. Covering Rational Surfaces with Rational Parametrization Images;Mathematics;2021-02-08

4. On the existence of birational surjective parametrizations of affine surfaces;Journal of Algebra;2018-05

5. Covering rational ruled surfaces;Mathematics of Computation;2017-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3