ON BENDS AND LENGTHS OF RECTILINEAR PATHS: A GRAPH-THEORETIC APPROACH

Author:

YANG C.D.1,LEE D.T.1,WONG C.K.2

Affiliation:

1. Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208, USA

2. IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Abstract

We consider the problem of finding a rectilinear path between two designated points in the presence of rectilinear obstacles subject to various optimization functions in terms of the number of bends and the total length of the path. Specifically we are interested in finding a minimum bend shortest path, a shortest minimum bend path or a least-cost path where the cost is defined as a function of both the length and the number of bends of the path. We provide a unified approach by constructing a path-preserving graph. guaranteed to preserve all these three kinds of paths and give an O(K+e log e) algorithm to find them, where e is the total number of obstacle edges, and K is the number of intersections between tracks from extreme point and other tracks (defined in the text). K is bounded by O(et), where t is the number of extreme edges. In particular, if the obstacles are rectilinearly convex, then K is O(ne), where n is the number of obstacles. Extensions are made to find a shortest path with a bounded number of bends and a minimum-bend path with a bounded length. When a source point and obstacles are pre-given, queries for the assorted paths from the source to given points can be handled in O( log e+k) time after O(K+e log e) preprocessing, where k is the size of the goal path. The trans-dichotomous algorithm of Fredman and Willard8 and the running time for these problems are also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3