AN OPTIMAL ALGORITHM FOR COMPUTING (≤K)-LEVELS, WITH APPLICATIONS

Author:

EVERETT HAZEL1,ROBERT JEAN-MARC2,VAN KREVELD MARC3

Affiliation:

1. Dép. de mathématiques et d’informatique, Université du Québec á Montréal, C.P. 8888, Succ. A, Montréal, Canada, H3C 3P8, Canada

2. Dép. d’informatique et de mathématique, Université du Québec à Chicoutimi, 555 boul. de l’Université, Chicoutimi, Canada, G7H 2B1, Canada

3. Dep. of Computer Science, Utrecht University, P.O. Box 80.089, 3508TB Utrecht, The Netherlands

Abstract

This paper gives an optimal O(n log n+nk) time algorithm for constructing the levels 1,…, k in an arrangement of n lines in the plane. This algorithm is extended to compute these levels in an arrangement of n unbounded x-monotone polygonal convex chains, of which each pair intersects at most a constant number of times. We then show how these results can be used to solve several geometric optimization problems including the weak separation problem for sets of red and blue points or polygons, the maximum line transversal problem for sets of line segments, the densest hemisphere problem for sets of points on a sphere and the optimal corridor problem for sets of points in the plane. All of the algorithms are quality-sensitive; they run faster if the optimal solution is a good one.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Maximum-Level Vertex in an Arrangement of Lines;Discrete & Computational Geometry;2022-01-08

2. Algorithms for Radon partitions with tolerance;Discrete Applied Mathematics;2021-10

3. Algorithms for Radon Partitions with Tolerance;Algorithms and Discrete Applied Mathematics;2020

4. Bottleneck bichromatic full Steiner trees;Information Processing Letters;2019-02

5. Computing a minimum-width square or rectangular annulus with outliers;Computational Geometry;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3