WHEN AND WHY DELAUNAY REFINEMENT ALGORITHMS WORK

Author:

MILLER GARY L.1,PAV STEVEN E.2,WALKINGTON NOEL J.3

Affiliation:

1. Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

2. Department of Mathematics, University of California at San Diego, MC0112, La Jolla, CA 92093-0112, USA

3. Department of Mathematics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213-3890, USA

Abstract

An "adaptive" variant of Ruppert's Algorithm for producing quality triangular planar meshes is introduced. The algorithm terminates for arbitrary Planar Straight Line Graph (PSLG) input. The algorithm outputs a Delaunay mesh where no triangle has minimum angle smaller than about 26.45° except "across" from small angles of the input. No angle of the output mesh is smaller than arctan [(sin θ*)/(2-cos θ*)] where θ* is the minimum input angle. Moreover no angle of the mesh is larger than about 137°, independent of small input angles. The adaptive variant is unnecessary when θ* is larger than 36.53°, and thus Ruppert's Algorithm (with concentric shell splitting) can accept input with minimum angle as small as 36.53°. An argument is made for why Ruppert's Algorithm can terminate when the minimum output angle is as large as 30°.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Reference5 articles.

1. On the Angle Condition in the Finite Element Method

2. Guaranteed-quality triangular mesh generation for domains with curved boundaries

3. Technical Report 02-CNA-011;Miller G. L.,2002

4. S. E. Pav and N. J. Walkington, Robust three dimensional Delaunay refinement, in Proc. 13th Int. Meshing Roundtable (Sandia National Laboratory, 2004) pp. 145–156.

5. A Robust Implementation for Three-Dimensional Delaunay Triangulations

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Where and how Ruppert’s algorithm fails;Examples and Counterexamples;2022-11

2. A 2D advancing-front Delaunay mesh refinement algorithm;Computational Geometry;2021-08

3. Meshing piecewise smooth complexes;Delaunay Mesh Generation;2016-04-19

4. Unstructured Mesh Generation;Combinatorial Scientific Computing;2012-01-25

5. Generalized Insertion Region Guides for Delaunay Mesh Refinement;SIAM Journal on Scientific Computing;2012-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3